Applications of Krein's theory of regular symmetric operators to sampling theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2008 J. Phys. A: Math. Theor. 41179801
(http://iopscience.iop.org/1751-8121/41/17/179801)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.148
The article was downloaded on 03/06/2010 at 06:46

Please note that terms and conditions apply.

Corrigendum

Applications of Krein's theory of regular symmetric operators to sampling theory

 Luis O Silva and Julio H Toloza 2007 J. Phys. A: Math. Theor. 40 9413-9426(a) After the proof of Proposition 5, we say that a de Branges space is given by an arbitrary entire function $e(z)$. In fact, this function must be entire and satisfy $|e(z)|>|e(\bar{z})|$ for z in the upper half plane.
(b) At the end of section 4, we write $e(z)=a(z)+i b(z)$. This function is usually written as $e(z)=a(z)-i b(z)$, with $a(z):=\frac{e(z)+e^{*}(z)}{2}$ and $b(z):=i \frac{e(z)-e^{*}(z)}{2}$.
(c) Concerning our discussion on the notion of the Nyquist rate in section 6, we should mention that there is indeed a natural generalization of that notion, the so-called Beurling densities.
(d) At the end of section 6, we discuss scenarios for optimal stable sampling. If results analogous to Kadets's $1 / 4$ theorem hold, then optimal sampling may occur not only when the sequence $\left\{a_{n}\right\}_{n \in \mathbb{Z}}$ is the spectrum of a self-adjoint extension of A.

A reference relevant to items (c) and (d) is Kristian Seip 2004 Interpolation and Sampling in Spaces of Analytic Functions, University Lecture Series vol 33 (Providence, RI: Am. Math. Soc.)

